自拍第一页_特黄特黄aaaa级毛片免费看_色婷婷丁香_中文字幕免费播放视频_亚洲成人av在线播放_超碰在线观看97

Provide customers with high-quality precision equipment
A high-tech industry integrating R&D, production, sales and service of experimental equipment
Shanghai full wavelength enzyme-linked immunosorbent assay analyzer - full wavelength scanning funct
release time:2025-01-03  |  Browse:776

The full wavelength scanning of the Shanghai Yetuo full wavelength enzyme-linked immunosorbent assay analyzer is one of its core functions. It refers to the instrument's ability to gradually scan all wavelengths within a set wavelength range and measure the light absorption or transmission characteristics of the sample at these wavelengths. Unlike traditional single wavelength enzyme-linked immunosorbent assay (ELISA) analyzers, full wavelength ELISA analyzers can provide wavelength scanning data over a wide range, ensuring the comprehensiveness and accuracy of analysis results.


The working principle of full wavelength scanning


Light source and optical system:


The light source of a full wavelength enzyme-linked immunosorbent assay analyzer is usually a xenon lamp, halogen lamp, or laser, which can provide a wide wavelength range of light.


There is usually a spectroscopic system inside the instrument, such as a monochromator, filter, or grating, which can select different monochromatic light (single wavelength light) for illumination throughout the entire wavelength range.


Wavelength selection and scanning:


The instrument controls the wavelength output of the light source through a spectrophotometer. Unlike traditional single wavelength instruments, the Shanghai Yetuo full wavelength enzyme-linked immunosorbent assay analyzer can gradually scan each wavelength based on the set starting and ending wavelengths.


During the scanning process, the instrument will measure the absorbance (A) or transmittance (T) of the sample at each selected wavelength, that is, the absorption or transmittance of light by the sample at each wavelength.


Sample response:


The molecules or ions in the sample will absorb light of different wavelengths based on their chemical structure and optical properties. Different wavelengths correspond to different absorption peaks, displaying the absorbance spectra of substances at various wavelengths.


By measuring these absorbance values, the instrument can help identify the components in the sample or reflect the concentration, chemical reactions, and other characteristics of the sample.


Data recording and display:


After the scanning process is completed, the instrument will record the absorbance (or transmittance) data at all scanning wavelengths and generate a data curve graph (the relationship between absorbance and wavelength, usually referred to as absorbance spectrum).


Users can analyze the characteristics of the sample through these spectra, such as the wavelength position, shape, and height of the absorption peak, and then infer the properties or concentration of the sample.


The advantages of full wavelength scanning


More comprehensive analysis:


Full wavelength scanning can provide complete spectral data for the same sample, rather than just a single data at a fixed wavelength. This means that users can have a more comprehensive understanding of the absorbance characteristics of the sample, especially for multi-component samples, and can distinguish the absorbance peaks of each component.


More precise results:


Due to the ability to scan multiple wavelengths, users can improve measurement accuracy by selecting the optimal wavelength. For example, if a certain absorption peak appears multiple times, a strong absorption peak can be selected for measurement to improve accuracy.


Adapt to more sample types:


Different samples (such as proteins, nucleic acids, enzymes, chemicals, etc.) have different absorption characteristics at different wavelengths. Full wavelength scanning can cover a wider range of wavelengths, making the instrument more adaptable and capable of analyzing different types of samples.


No need to frequently change the wavelength:


In traditional single wavelength instruments, users need to manually adjust the wavelength to obtain data at different wavelengths, while some full wavelength enzyme-linked immunosorbent assay analyzers can automatically adjust the wavelength during the scanning process without manual intervention, improving experimental efficiency.


High throughput analysis:


Full wavelength scanning can measure data at multiple wavelengths at once, eliminating the hassle of measuring each wavelength individually and greatly improving the efficiency of laboratory analysis.


Application of Full Wavelength Scanning


Full wavelength scanning is not only suitable for ELISA (enzyme-linked immunosorbent assay), cell activity detection, protein or DNA/RNA analysis, but also widely used in the following fields:


Drug development and screening:


In drug development, the absorption characteristics of drug molecules towards specific wavelengths of light can reflect their structure and function. Full wavelength scanning can help screen for suitable drug molecules.


Biomarker detection:


In medical testing, biomarkers of specific conditions may exhibit significant absorption or reflection characteristics at certain wavelengths. Full wavelength scanning can help detect these biomarkers and assist in pathological diagnosis.


Food and Environmental Analysis:


Additives and pollutants in food, as well as harmful substances in environmental water bodies, all have absorption peaks at specific wavelengths. Using full wavelength scanning can simultaneously detect multiple pollutants.


Clinical diagnosis:


Used for qualitative and quantitative analysis of samples (such as blood, urine, secretions, etc.) in clinical trials. Wavelength scanning can help detect the concentration of different molecules and elements in the blood.


Chemical research and reaction kinetics:


In the study of chemical reactions, changes in the absorbance of reactants and products can reflect the progress of the reaction. Full wavelength scanning can provide real-time monitoring of the reaction process.


conclusion


The full wavelength scanning function of the full wavelength enzyme-linked immunosorbent assay analyzer enables it to have stronger analytical capabilities than traditional single wavelength enzyme-linked immunosorbent assay analyzers. It can provide more comprehensive and accurate experimental data, adapt to various experimental needs, and is widely used in fields such as life sciences, drug research, and food testing. By automating wavelength scanning and data recording, experimental efficiency and reliability of results have been improved.

未標(biāo)題-1.jpg

Previous:Shanghai Yetuo Basic Pure Water Machine - What is the principle behind naming the pure water machine     Next:Shanghai Yetuo oil-free vacuum pump - the origin of oil-free vacuum pump
Follow us
Mobile station
  • Mobile:19961895916
  • Tel:19961895916
  • WeChat Account:上海葉拓科技
  • Address:C2-301, green window, No. 4, Lvdu Avenue
Copyright? 2025 Shanghai Yetuo Technology Co., Ltd  ICP備案號(hào):滬ICP備20000740號(hào)-3 主站蜘蛛池模板: 黄视频软件大全 | 人人看人人澡 | 人操人| 国产三级不卡 | 精品91视频 | 久久91亚洲精品中文字幕 | 国产极品白嫩美女在线观看看 | 国产精品成人影院 | 欧美jizz | 久久综合九色综合91 | 天天色天天操天天 | 大尺度一级毛片波多野结衣 | 天天看片天天操 | 视频二区 调教中字 知名国产 | 国产一级做a爱片久久片 | 色接久久| 精品日韩视频 | 欧美三级真做在线观看 | 日本三级在线视频 | 国产网红主播在线视频观看 | 免费伊人| 69视频免费观看 | 精品久久久久久久久久 | 最近高清中文在线字幕在线观看 | 免费大片黄在线现看国语 | 美女精品久久久久久国产潘金莲 | 蜜桃视频免费在线观看 | 干夜夜 | er久99久热只有精品国产 | 日本亚洲天堂网 | 免费观看欧美一区二区三区 | 动漫精品专区一区二区三区不卡 | 国产中日韩一区二区三区 | 久久鲁视频 | 免费看一级a一片毛片 | 夜夜草视频 | 男大当婚电视剧免费观看电视剧大全在线观看 | 狠狠一区 | 天天成人 | 日本vidz| 国产精品视频全国免费观看 |